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Abstract. We present three groups of non-wnonical quantum oscillators. The position and 
momentum operators of each group generate basic Lie superalgebras. namely s1(1/3). nsp( l /6)  
and osp(3/2). The s1(1/3) oscillators have finite energy spectrum and finite dimensions. The 
osp(l/6) oscillators are related to the paradose statistictics. The internal angular momenhlm 
s of the osp(3/2) oscillators takes no more than three OlalOinteger values. In a particular 
representation .T = 112. 

In 1950 Wigner published a paper entitled ‘Do the equations of motion determine the 
quantum mechanical commutation relations ?’ [I]. The question to answer was whether for 
a (one-dimensional) quantum system with a Hamiltonian 

H = (p2 /2m)  + v(4) 

,one can derive the canonical commutation relations (CCRs) 

[P, 41 = -3 (1) 

assuming that the Hamiltonian equations 

Q = p / m  p = -aV/aq 

and the Heisenberg equations (in the corresponding picture) 

Q = -(i/fz)[q. HI L; = -(i/E)[p, HI (3) 

hold. The point of Wigner was that (2 )  and (3) have a more immediate physical significance 
than (1). The inverse is known to be true [2]: from (1) and (2) (respectively (1) and (3)) one 
derives (3) (respectively (2)). Therefore the question in fact was whether one can generalize 
the concept of a quantum system in a logically, consistent way. Considering as an exapple 
a one-dimensional harmonic oscillator (m = h = I), H = $(q2 + p 2 ) ,  Wigner has shown 
that such a generalization is indeed possible and in fait he found a family of non-canonical 
solutions,Jabelled with an arbitrary non-negative number EO, the energy of the ground state. 
In terms of the operators 

(4) 
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the result of Wigner can be stated as follows. The Hamiltonian equations (2)  are identical 
to Heisenberg equation (3) for all (representations of the) operators a', which satisfy the 
relations [3] 
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[ { u ~ , a ~ ) , a ' ]  = ( E  - ~ ) u ' + ( E  - q ) a f .  (5 )  

Here and throughout e,?, E = zk or +I; [x .  y l  = x y  - yx, { x ,  y} = xy + y x .  The case 
Eo = l/2 corresponds to the canonical case, i.e. only for this value of Eo are U* ordinary 
Bose operators, [a-, a+] = 1. 

Although Wigner's paper attracted some immediate attention [4], most of the 
investigations following it remained in the frame of the one-dimensional case [5]  (see 
also [3] for other references). Certainly, one can immediately generalize the above ideas 
to any n-dimensional oscillator and, in particular, to a three-dimensional oscillator with a 
Hamiltonian 

assuming simply that the coordinates and momenta corresponding to different degrees of 
freedom commute with each other: [ (p j , r j ) ,  (p j . r j ) l  = 0 for i # j .  There also exist, 
however, other, non-trivial generalizations. One such three-dimensional oscillator with 
quite unconventional properties was studied by one of us (TDP) in [6] (see also below). 
In the present paper we shall give an example of another non-canonical three-dimensional 
Wigner oscillator, which has an interesting physical property: the spin of the oscillator is 
1/2. The oscillators considered in [6,7] and the one we are going to study here are particular 
cases of what we call Wigner quantum oscillators (and, more generally, the Wigner quantum 
system). The oscillator is said to be a Wigner quantum oscillator if the following conditions 
are fulfilled. 

(i) The state space W is a Hilbert space. The physical observahles afe Hermitian 
operators in W .  

(ii) The Hamiltonian equations and the Heisenberg equations are identical (as operator 
equations) in W .  

(iii) The internal angular momentum (the spin) of the oscillator s = (s, , sz. s3) is a linear 
function of the position operators T = (r l ,  rz, r3) and the momentum p = ( p l .  p2, p3 ) ,  so 
that s, T and p transform as vectors: [sj, ck] = i C=l EJWZI, Ck = sk, rk, p k ,  i ,  j, k = 1,2,3. 

(iv) The spectrum of H is bounded from below. 
The underlying mathematical structure of the oscillators which we consider is one and 

the same. It is related to the representation theory of some basic Lie superalgebras [ S I .  As 
we shall see, this is also the case for the canonical three-dimensional oscillator. In order 
to outline the link with the Lie superalgebras (see also [6]), we introduce in place of the 
unknown p and T new unknown operators 

3 

mw i ',' = &rk T P k  mwh k = 1,2,3. (7) 

In terms of U:, which we call creation and annihilation operators (CAOS), the Hamiltonian 
(6) reads: 

k=l I 
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Condition (ii) yields (n = 3: k = 1,2,3): 

n C[{a,+, a;}, a 3  = f2a, .  * 
Z=l 

Equations (9) are a unique consequence from the Hamiltonian equations 

2 p = -mo r 1' = p / m  

and the Heisenberg equations 

p = -(i/R)[p, HI r = -(i/R)[r, H I  

independently of the properties of the unknown UOs a,'. They are equal time relations, 
the time dependence being ai(t) = eimwrag(0), E = rt. Hence equations (9) hold, if they are 
fulfilled at, say, t = 0. ~ . 

In order to be slightly more general, let us denote by F(n) the associative algebra 
with unity, generators a:, . . . ,a: and relations (9). Then any representation of F(3) is a 
candidate for a Wigner oscillator or, more precisely, the CAOs of any Wigner oscillator 
give a representation of F(3). In such a case the representation space of F(3) (the 
corresponding F(3) module) is a~state space of the oscillator. For definiteness we call 
the algebra F(n)  an (n-dimensional) free oscillator algebra. Thus, as a first step, one has to 
find the representations of F(3) and then select those of them for which conditions (i), (ii) 
and (iv) also hold. It turns out this is not an easy problem and, in fact, it is so far unsolved. 
Here we list three classes of solutions. 

1. Class 1 solutions: osp(l/6) oscillators 

Let Fl(n) be the (free unital) associative superalgebra witb odd generators a:;. . .,a: and 
relations 

[(ai I n  , a j ) ,  a;] = &k(c - t)a,? + &jjir(~ - q)af -i, j ,  k = 1, . . . , n 

t, q - ~  = f o r  & 1. (12) 

The operators (12) satisfy equations '(9) and therefore F, (n)  is a factor algebra of F(n) .  
Consequently any representation of FI (n)  is a representation of Ffn).. Observe that Wigner's 
solutions belong to this class (n = 1). The canonical solution, namely the one in which 
the CAOS are Bose operators is also from this class. It is easily verified that operators (12) 
are para-Bose (pB) operators [9]. Their main algebraic property stems from the observation 
that the subspace 

(13) BI = lin.env.[ai I , {a:, a,E]li, j, k = 1, . . . , nE, a, E = &] c F,(n) 

is a Lie superalgebra [ 103 with odd generators as the pB operators. This algebra is isomorphic 
to one of the basic Lie superalgebras in the classification of Kac [SI, namely to the 
orthosymplectic LS osp(l/2n) B(O/n), whereas FI(n) is its universal enveloping algebra 
[ll]. As a result the representation theory of any n pairs of pB operators is completely 
equivalent to the representation theory of the LS osp(l/2n).  It is another question that 
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for physical reasons one has to selcct a subclass of representations, which in the case 
n = 3 should satisfy the conditions (i)-(iv). Unfortunately not much is known about 
the representations of osp(l/6) and, more generally, about osp(l/Zn) (apart from the full 
classification of the finite-dimensional modules [SI). The only technique to construct new 
representations from the Fock representation was developed by Green 191 through the Green 
ansatz [IZ]. It leads, however, to reducible representations and is realized in tensor products, 
of Fock spaces. The representation with statistics of order p corresponds to the irreducible 
representation of osp(l/Zn), containing the highest weight vector (which is the vacuum) in 
the tensor product of p copies of Fock spaces (considered as osp(l/Zn) modules). There 
exists, however, no effective methods for extracting this representation from the reducible 
tensor product representation. This may be the reason why pB oscillators with dimensions 
higher than one have not so far been considered. The important conclusion for us is that 
there exist solutions of the free oscillator algebra F(n) with operators, which generate the 
basic Lie superalgebras osp(l/Zn), namely an L S  from the class B in the Cartan-Kac 
classification [8]. This naturally leads to the idea of trying to find solutions of equations (9) 
with representations of other LSs from the same class B or from the other classes of basic 
Lie superalgebras. 
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2. Class 2 solutions: sl(Y3) oscillators [6] 

Let FZ(n) be the associative superalgebra with generators a:, . . .,a,‘ and relations 

[[a:, a;], a;] = 8 -  Ik U’ i ,  -&.a+ 11 k 

[[ai + , U1J, U;] = -8ika; + s,a; 
[a?, a;, = (ar:, a17] = 0. 

(14) 

These operators also satisfy equations (9) and therefore F&) is another factor algebra of 
the free oscillator algebra F(n).  The subspace 

(15) A = lin.env.{ai i. , (a?, a;]li, j,k = 1,. . . , n )  c Fz(n) 
I 

is a Lie superalgebra with odd generators a;, . . . ,a:, which is isomorphic to the Lie 
superalgebra s l ( l / n )  A(0, n - 1) from the class A of the basic Lie superalgebras. &(n) 
is its universal enveloping algebra. Hence any representation of s l ( l / n )  gives a solution of 
equations (9). The condition (i) restricts the class of representations to the finite-dimensional 
representations of sl(1/3), which are explicitly known [13]. The internal angular momentum 
(condition (iii)) is si = -i E:,,=, & i ~ ~ ( a ; ,  a;]. A class of state spaces, labelled with any 
non-negative integer p ,  was studied in [6]. The corresponding oscillator, one can call it 
the s1(1/3) oscillator, is very unconventional. We mention some of its properties. The 
spectrum of the Hamiltonian is finite; it has no more than four different eigenvalues. The 
square distance operator y2 = (q)’ + (r# + (r# is an integral of motion. Its maximal 
eigenvalue is (r,,,=)’ = 3pfi/Zmo. Therefore the oscillator is confined in the space. It 
resembles in this respect a wavelet (see [I41 and the references therein). The spin of the 
oscillator is either 0 or 1. Finally, the coordinates q, r2, r3 do not commute with each other, 
so that the position of the oscillating particle cannot be localized. The particle is smeared 
with a certain probability along a sphere with a fixed radius. 
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3. Class 3 solutions: osp(3/2) oscillators 

Another new class .of solutions of the compatibility equations (9), i.e. of condition (ii), is 
given with the set of all possible representations of operators a;, a:, 4, which satisfy the 
following relations ( E  =~i or + l ,  i ,  j ,  k = 1 ,2 ,3 ) :  

[(ai + ,ay), ai]  = i6iXaJ - ?$8jkaf + $8jj€ai 

[ ( U i ,  < <  ai 1, a;(] = - 4 E a ~  

[(a;, a;] ,  a;] = 0 
3 k  

[ a ~ , a ~ ) = O  i # j  

(U:, a,:J = -{a;, a;) i # j 
[a:.a;J = {a;, a;] = I%+, a;) 

(a:y = (a;y = (a;)2. 

We denote by F3(3) the infinite-dimensional associative superalgebra with generators 
I ,a, ,a, and relations (16). The grading on F3(3) is induced from the requirement that a' +~ + 

the CAOS are odd generators. Consider the subspace 

(17) 

and turn it into a Lie superalgebra with the supercommutator which is natural for any 
associative superalgebra, namely (a, b )  = a b  - ( - l )@bu, where (Y = deg(a), B = deg(b). 
Elsewhere we shall show that B3 is isomorphic to the orthosymplectic Lie superalgebra 
osp(3/2) and that F3(3) is its universal enveloping algebra. Therefore we call this oscillator 
an osp(3/2) oscillator. The angular momentum satisfying condition (iii) reads as 

B3~= lin.env.{ai, e s  ( a j ,  ai] l i ,  j ,  k = 1,. ..,ne, q, E =A) c F3(3) 

The osp(3/2) modules (= representation spaces) for which the conditions (i) and (iv) 
also hold are infinite-dimensional. They are labelled with all possible pairs ( p .  q ) ,  where 
p is an arbitrary non-negative half-integer, and q is any negative real number, such that 
p + 2 q  < 0. All representation spaces W ( p ,  q )  (among others) have been described in 1151. 
The energy of the oscillator depends only on the value of q and is 

n = 0,1,2,. . . . (19) 

Depending on the representation, the ground energy can be arbitrarily close to zero (for 
p = 0 and very small negative q) ,  but never zero. The spin s depends mainly on p and 
takes at most three different values. More precisely, the spin content within each state space 
W ( p ,  q )  reads: 

E, = oh(n - 2q) 

(a) P = 0 s = o , 1  

(b) p = 1/2, p + 2q = 0 s = 112 

(d) p = 1, p + 2q = 0 s = p - l , p  

(e) p 2 1. p + 2q < 0 s = p - 1,p,  p + I 

(c) p = 1/2. p + 2q < 0 s = 1 / 2 , 3 / 2  
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The derivation of the above results, together with the multiplicities of the states will be given 
elsewhere. Here we consider explicitly the most simple and, maybe, the most interesting 
representation, the one corresponding to the spin 112 (case (b)). This representation is 
sometimes referred to as a metaplectic representation [16]. An orthonormed basis in this 
state space W(1/2, -1/4) = W(1/2) is given with the set of all vectors In,$,), where 
n = 0, I ,  2. . . . Iabels the energy of the state and $3 = .tf is the value of the third projection 
of the spin. 

T D Palev and N I Stoilova 

The transformations of the basis-states under the action of the CAOS reads: 

From (8) and (20) one derives Hln, $3) = wh(n+1/2)ln, s3). Thus, the energy spectrum 
of the oscillator in this particular representation is the same as for a one-dimensional 
harmonic oscillator: 

E,  = wh(n + 1/2) n = 0, 1,2, . . . . (21) 

The eigensubspace W,(1/2) of the Hamiltonian with energy E, is spanned on In, sg), $3 = 
&1/2 and it is closed under the action of the spin operators. It carries a two-dimensional 
irreducible representation of the spin su(2) algebra with generators sl,sz,s3. The state 
space W(1/2) is an infinite direct sum of spin 1/2 modules, 

W / 2 )  = @:4w”(1/2). (22) 

Clearly this particular osp(3/2) oscillator is very different from the canonical three- 
dimensional oscillator. The next table demonstrates this. By W,, n = 0,1 ,2 , .  , . we denote 
the eigensubspace of the Hamiltonian with energy E,. 

Canonical oscillator Osp(3/2) oscillator 
Energy E, = wfi(n -k 3/2) E, = wR(n + 1/2) (23) 
Spincontentof W, s = n , n - 2 , n - 4  ,..., I ( o r 0 )  s = 1 / 2  

The purpose of the present paper was to show, using simple examples, that Wigner’s 
ideas to study more general quantum systems, the Wigner quantum systems in our 
terminology, are very rich in their origin. E, for instance, one considers a non-canonical 
two-particle system with internal variables, which have the properties of an s1(1/3) oscillator 
[6 ] ,  then the two-particle system has finite space dimensions, it behaves like a system of 
two (non-relativistic) quarks, confined in the space. The osp(3/2) oscillator, viewed in 
the same way, gives a model of a spin-1/2 system, which has a classical analogue: two 
non-canonical point particles curl around each other and the resulting angular momentum 
of the composite system is l/2. Hence this is a model of a spin (among several others; see 
[I71 and the references therein). 

One may think that the freedom in constructing such more general quantum systems 
is very large. As far as the three-dimensional oscillator is concerned, we may say that 
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the oscillators considered here exhaust all Wigner oscillators, for which the position and 
the momentum operators generate simple Lie superalgebras [18]. If one goes beyond the 
harmonic potentials, it is an open ~ question whether those interactions for which (non- 
canonical) Wigner quantum systems exists. 

Elsewhere we shall show that Wigner’s ideas can be extended to any number of pmicles. 
In particular for oscillator-like interactions between the constituents one finds solutions for 
which the composite system has finite dimensions and therefore behaves very much like a 
nucleus. 
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